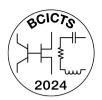
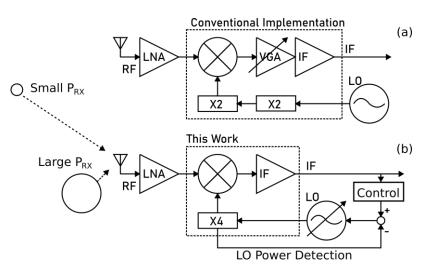
1b.3


D-band SiGe Subharmonic Downconverter with Dynamic Conversion Gain and Fixed Input Compression

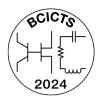
Jonathan Tao, James Buckwalter University of California, Santa Barbara

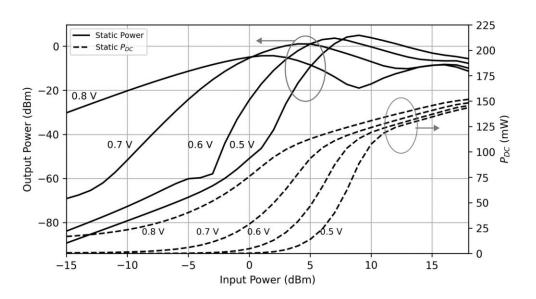

> UC Santa Barbara Santa Barbara, California 93106

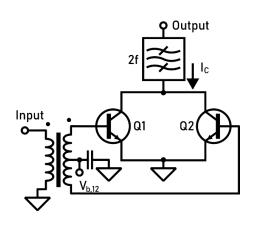
> > UC **SANTA BARBARA**

Motivation

- Power consumption above 100 GHz is prohibitive:
 - mobile applications
 - Radar-radio fusion on platform
- LO system power dominates receiver power consumption
- Reduce power in LO chain dynamically with channel conditions

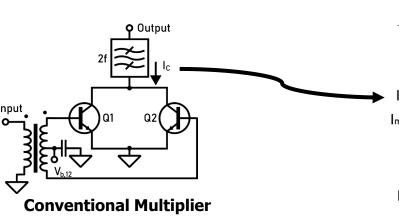

Goals of This Work


X4 Subharmonic downconverter at D-band (110 GHz – 170 GHz)


- 1. Linearize gain on LO frequency multiplier
 - backoff controllability to save power
- 2. Simplify circuit to save power and to integrate into an array

Problem: Gain Sensitivity

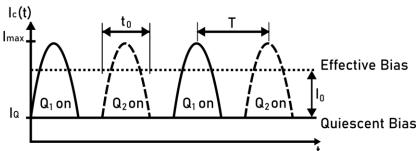
- Typical multiplier chains operate at a single saturating power
- High gain sensitivity in back-off power conditions: poor controllability



Simulation on frequency doubler with different biases for optimization

Push-pull Frequency Multipliers

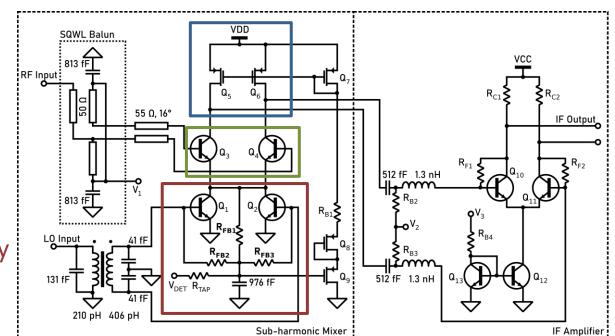
- Input is rectified to produce pulsed waveform
- We can get a 4th harmonic
- But there is an additional DC current
 - Affects biasing and gain
 - Causes extreme gain sensitivity to power



$$I_c(t) = I_0 + I_1 cos(\omega t) + I_2 cos(2\omega t) + \dots I_n cos(n\omega t)$$

Fourier Series

$$I_n = I_{max} \frac{4t_0}{\pi T} \begin{cases} 1 & \text{, if } n = 0 \\ 2 \cdot \left| \frac{\cos\left(\frac{n\pi t_0}{T}\right)}{1 - \left(\frac{n\pi t_0}{T}\right)^2} \right| & \text{, if } n \text{ even} \\ 0 & \text{, if } n \text{ odd} \end{cases}$$


Proposed Downconverter

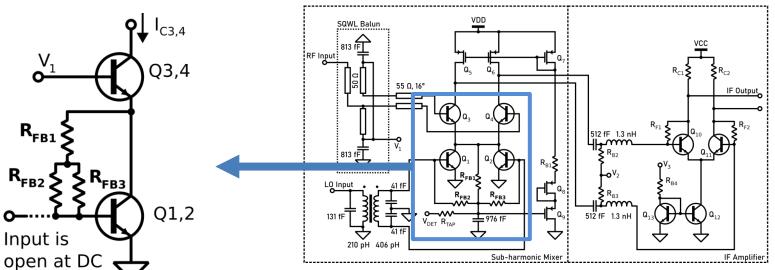
Active Load

Mixer

X4 Frequency Multiplier



VDD VCC	3 V
V_1	1.5 V
$V_1 V_3 V_2$	1 V


$Q_1 Q_2$	6 um
Q_3 Q_4	10 um
$Q_5 Q_6$	0.1 x 40 um
Q_7	0.1 x 2 um
Q_8 Q_9	0.1 x 10 um
$Q_{10} Q_{11}$	4 um
Q ₁₂	6 um
Q ₁₃	0.5 um

1 kΩ	
3.5 kΩ	
200 Ω	
800 Ω	
1 kΩ	
5 kΩ	
300 kΩ	
500 Ω	

Feedback Bias Analysis

Equivalent DC Model

VDD VCC	3 V
V_1	1.5 V
$V_1 V_3 V_2$	1 V

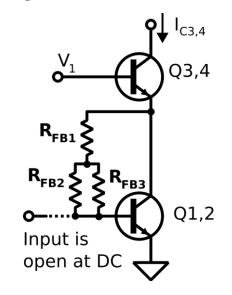
$Q_1 Q_2$	6 um
$Q_3 Q_4$	10 um
$Q_5 Q_6$	0.1 x 40 um
Q ₇	0.1 x 2 um
Q_8 Q_9	0.1 x 10 um
$Q_{10} Q_{11}$	4 um
Q_{12}	6 um
Q ₁₃	0.5 um

R _{FB1}	1 kΩ	
$R_{FB2}R_{FB3}$	3.5 kΩ	
$R_{C1} R_{C2}$	200 Ω	
R_{F1} R_{F2}	800 Ω	
R _{B1}	1 kΩ	
R_{B2} R_{B3}	5 kΩ	
R _{B4}	300 kΩ	
R _{TAP}	500 Ω	

Proposed Design: Feedback Bias

- Parallel transistors shorted at DC: treat as one
- Simplifying assumptions:

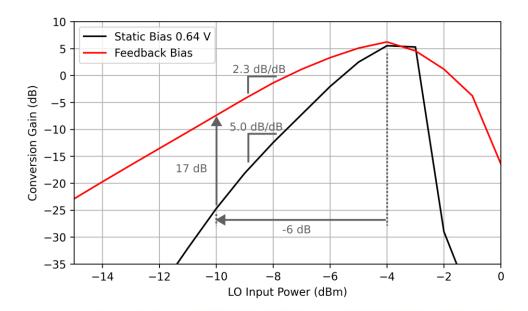
$$V_{BE1,2} \approx V_{BE3,4}$$
 $I_{C3,4} \approx I_{C1,2}$


$$I_{C3,4} \approx I_{C1,2}$$

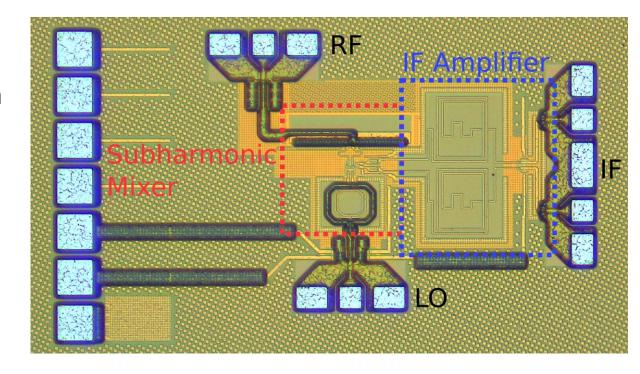
Feedback Bias has stable bias point:

$$I_{C3,4} = \beta_{1,2} \frac{V_1 - 2V_{BE}}{R_{FB1} + R_{FB2} || R_{FB3}}$$

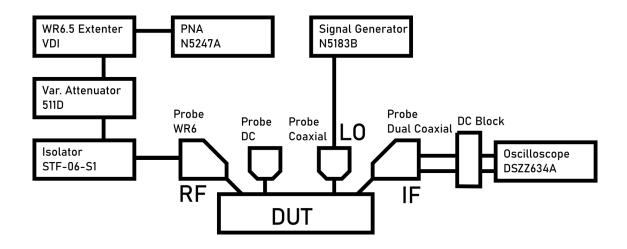
 Current change suppressed by negative feedback on V_{RF}


Equivalent DC Model

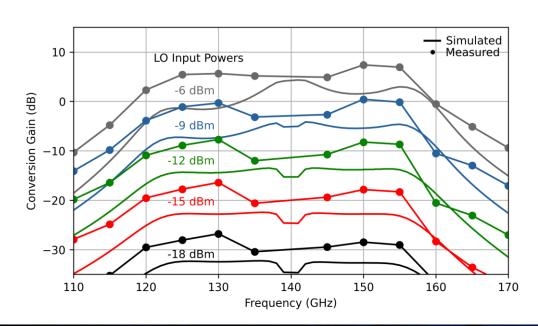
Simulated Effect of Static Biasing

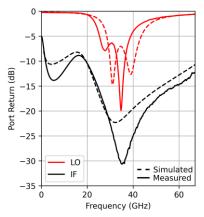

- With -6 dB LO backoff from peak gain
 - 17 dB more gain than static biased version
- Obtain higher performance at back-off and less sensitive gain

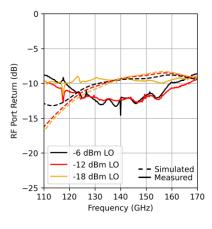
Layout


- Global Foundries 9HP+
 - 90-nm SiGe BiCMOS
- Core: 0.56 mm x 0.35 mm

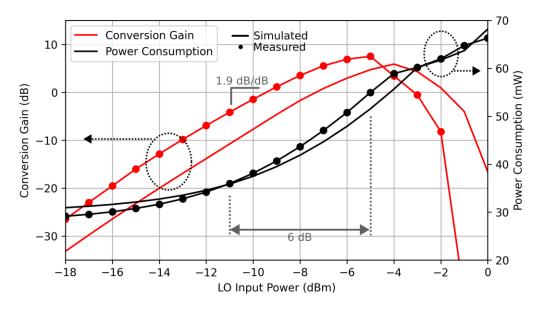
Measurement


- Results calibrated with reference power meter (scalar measurement)
- Differential mismatch compensated with time delay in oscilloscope



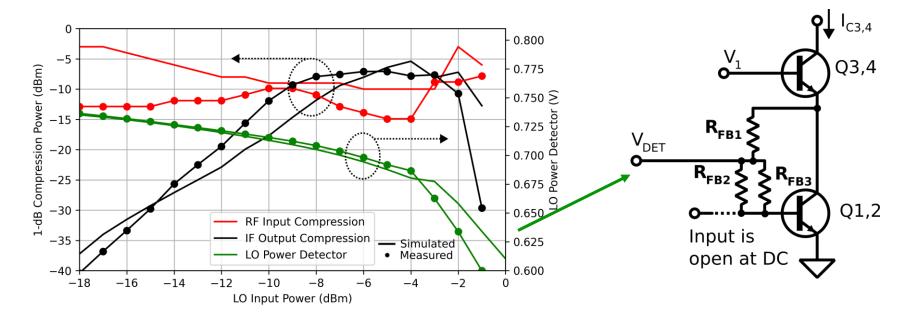

Conversion Gain Over Frequency

- Reliable control of conversion gain over a wide LO power range
- LO port frequency shift led to better match at target LO frequency

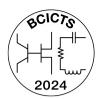


Power Consumption Tradeoff

- Back off LO power from -5 dBm to -11 dBm
 - Trade 11.7 dB of gain to save 35% power



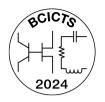
155 GHz RF with 140 GHz LO


Compression and Power Detector

8CIC75

- Input compression is insensitive to LO power variation
- Feedback bias circuit can be used for LO power detection

Conclusion

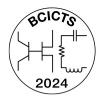


- A fourth subharmonic D-band downconverter is implemented with bias feedback
 - Demonstrates reliable LO power backoff to save power
- Achieves a high multiplication factor without sacrificing additional area, power consumption, or LO power requirement

Reference	This Work	[3]	[6]	[7]
TD 1 1	90-nm	90-nm	130-nm	130-nm
Technology	SiGe	SiGe	SiGe	SiGe
Subharmonic	4	2	2	1
f _C (GHz)	140	136	121	140
BW _{3dB} (GHz)	35	38	>14	35
Gain (dB)	7.5	5.1	4	32
P _{i1dB} (dBm)	-15	-7	-	-41
Noise Figure (dB)	21.7*	-	23^*	9.5
LO (dBm)	-5	2	7	-2
P _{DC} (mW)	55	51	89	65
Area (mm ²)	0.196^{\dagger}	0.450^{\dagger}	-	0.191^{\dagger}

^{*} Simulated † Area without pads.

Acknowledgements



- This work was supported by the Semiconductor Research Corporation (SRC) under the JUMP program, Cognisense
- The authors appreciate the support of GlobalFoundries for access to the 9HP+ process.

Comparison References

[3] A. Moradinia, Y. A. Mensah, B. L. Ringel, and J. D. Cressler, "A 117–155-GHz SiGe HBT D-Band Subharmonic Mixer Utilizing a Novel 180° Hybrid Coupler," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 6, pp. 731–734

[6] K. Schmalz, W. Winkler, J. Borngr aber, W. Debski, B. Heinemann, and J. C. Scheytt, "A Subharmonic Receiver in SiGe Technology for 122 GHz Sensor Applications," IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1644–1656,

[7] T. Maiwald, J. Potschka, K. Kolb, M. Dietz, A. Hagelauer, A. Visweswaran, and R.Weigel, "A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2277–2281